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The Orr-Sommerfeld equation is solved numerically using expansions in Chebyshev 
polynomials and the generalized Rayleigh quotient iteration. Accurate results for 
large values of the parameters are obtained, and these further verify the belief that 
plane Couette flow is stable to infinitesimal disturbances. For finite disturbances, a 
formal expansion based on the method of Stuart and Watson as modified by Reynolds 
& Potter is used. This method shows a transition to instability for a large enough 
amplitude. 

1. Introduction 
In  this paper we are concerned with the question of the stability of plane Couette 

flow. The case of infinitesimal disturbances has been studied numerically by Gallagher 
& Mercer (1962)) Deardorff (1963) and more recently by Davey (1973). These papers 
indicate that plane Couette flow is stabie for all values of the two parameters: the 
wavenumber a and the Reynolds number R. The first part of this paper develops an 
efficient method of computing accurate eigenvalues which allows their computation 
for larger values of the parameters. The eigenvalues obtained further confirm the 
belief in stability. 

However, in a series of experiments, Reichardt (1956) was able to maintain laminar 
flow only for R up to about 750. The assumption is that nonlinear effects cause the 
transition to turbulent flow. 

The nonlinear analysis centres about an equation for the amplitude of the velocity 
disturbance of the form dA/dt  = d0)A +d2)A3+ ... . Here d o )  = ac,, where c is an 
eigenvalue of the linearized stability theory. For Couette flow, a(*) < 0 for all values of 
a and R. If a@) is positive, then for a large enough amplitude dA/dt will be positive, 
and disturbances will grow instead of dying out. 

The second part of this paper involves numerical calculations of the values of A 
for which d0)A +&)A3 = 0. This gives the threshold amplitude for a second-order 
approximation, i.e. the amplitude for which the disturbance neither grows nor decays. 
These threshold amplitudes have been calculated for some special cases by Ellingsen, 
Gjevik & Palm (1970). Also, Davey & Nguyen (1971) discussed this problem for the 
similar case of pipe flow. This paper presents more detailed calculations. 

Also, the accuracy of this second-order approximation has been questioned. So a 
fourth-order approximation has been calculated for a few cases. These results are 
fairly close to the second-order approximations, and are further destabilizing. 

14 F L M  a3 
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2. The linear problem 
We consider the flow of a viscous incompressible fluid between two horizontal 

planes. In  non-dimensional form, the planes are two units apart and move such that 
the speed of the upper plane is + 1 and the speed of the lower plane is - 1. The x axis 
is chosen midway between the planes. The Reynolds number R is the reciprocal of the 
kinematic viscosity, and u(x, y, t )  and w(x, y, t )  are the x and y components of the fluid 
velocity. The basic laminar flow is u = y, w = 0. We shall study perturbations of the 
form u = y +uf, w = w‘, where u’ and w f  are small. 

We may introduce a perturbation stream function $ defined by u’ = a@/ay and 
of = - a@/ax and seek periodic solutions of the form $ = #(y) exp {ia(x - ct)}.  Sub- 
stituting into the Navier-Stokes equations and neglecting second-order quantities, we 
obtain the familiar Om-Sommerfeld equation 

{ ( 0 2  - a2)2 - iaR( y - c )  ( 0 2  - a”} # = 0 (2.1) 

with boundary conditions 
$( k 1) = D$( -r- 1) = 0. 

In this formulation, $ is a complex-valued function. But since the original Navier- 
Stokes equations contain no complex quantities, and have been linearized, *($+ $) 
is also a solution, and is real valued. 

For given values of a and R ,  a non-trivial solution for r j  exists only when c = c, + ici 
is a complex eigenvalue. If ci > 0 the flow is unstable and ifci < 0 the flow is stable. 

We shall approximate #( y) by 
N 

n= 0 
Z a n  Tn(Y), 

where Ip,(y) is the nth-degree Chebyshev polynomial, defined by T’(cos8) = cosne. 
The advantages of Chebyshev polynomials are discussed in general by Fox & Parker 
(1972) and for the particular case of plane parallel flows by Orszag (1971). The most 
important fact is that Chebyshev polynomial approximations are of infinite order, in 
the sense that errors decrease more rapidly than any power of 1/N as N approaches 
infinity. So accurate solutions can be obtained more rapidly using Chebyshev poly- 
nomials. 

Also, the equations for the coefficients an can be obtained relatively easily using the 
relations 

wherec, = O i f n  < 0, c, = 2,  c, = 1 i fn  > 0, and d, = 0 if n < 0, d, = 1 if n > 0. It 
is more efficient to integrate (2.1) four times to obtain 

If we represent the lcth integral of g5 by 2: ak Tn and the kth integral of y# by Z bk T,, 
this leads to a system of equations 

ian- 2ia2at+ia4a4,+aRb:- 2aRa3,,-a3Rb4,-caRai+ca3Ra: = 0. (2.6) 
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If we let Z2 indicate that the summation is in steps of two, then 
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jk+h+E+ma 
n--8fkfh+l+m Cn--B+k+h+l+m 

3 3 3 3  
a$ = x 2  x2 x 2  x?- 

m=l 1=1 k = 1  h=l16n(n - 2 +m) (n- 4 +m+ I )  (n - 6 + m + I +  k)' 
3 3 3 i k f h - 2  

an-6 fk fh+ j  Cn-6+k+h+i b2, = x2 C2 x2 
8n(n - 2 + k) 9 

j=l k = l  h = l  

3 3 3 3 3  im+'+k+han-lO+m+l+k+h+i Cn-lO+m+lfk+h+?' ba = x2 C2 x2 x2 C2 
j = l  m = l  z = l  k = l  hZl  32n(n - 2 +m) ( n -  4 + m + l )  ( n -  6 +m+l+ k) 

(if n = 4,j = 3 and m = 1 = k = h = 1 ,  the above coefficient is doubled). 
Because of the integration, (2.6) contains arbitrary constants for the cases n = 0, 

1, 2 and 3. So we replace the equations by equations representing the boundary 
conditions. Using the relations Tn( -t I )  = (k l ) n  and DTn( k 1 )  = n2( & l)'+l, we can 
obtain the equations 

N N N N 

n=O n = l  n=O n= 1 
I;2 an = 0, x2 an = 0, x2 n2an = 0, x 2  n2an = 0. 

Using these four equations plus (2.6) for n = 4 ,  5 ,  ..., N ,  we obtain a system of 
N + I equations in N + 1 unknowns. In  matrix form this can be written as 

xu-CYU = 0, 

where X is a complex-valued matrix, Y is a real-valued matrix and U = (ao, a,, . . . , a N ) T  

is the eigenvector to be determined. 

3. Solving the matrix eigenvalue equation 
A standard method of solving the above system would be the LR or QR matrix 

eigenvalue algorithm, described by Wilkinson (1965) and modified for problems 
of this type by Gary & Helgason (1970). However, this method finds all the eigenvalues, 
and we are mainly interested in the eigenvalue whose imaginary part is closest to 
zero. So an alternative method is used, based on a series of papers by Ostrowski 
(1958-9) discussing the Rayleigh quotient. 

We define a generalized Rayleigh quotient R(U, V) = (VTXU)/(VTYU). If 

XU = cYU and VTX=cVTY, 

then R(U, V) = c. Moreover, the quotient is stable, i.e. R(U +&', V+ EV') differs 
from R(U, V) only by terms of second order in E. 

This makes possible an iterative procedure for determining any specific eigenvalue c. 
We start with an approximation co and arbitrary vectors U, and V,. Here c, can be 
obtained from the asymptotic analysis, by using an eigenvalue computed for nearby 

14-2 
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X Y 2 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 

2.874 
2.530 
2.357 
2.254 
2.199 
2.178 
2.182 
2-203 
2.236 
2.280 

- 8.065 
- 6.012 
- 4.978 
- 4.338 
- 3.900 
- 3.576 
- 3.324 
- 3.122 
- 2.943 
- 2.813 

TABLE 1. Values of X ,  Y and 2 for R > 200. 

values of a and R or by using a matrix algorithm for a smaller value of N .  The iteration 
is defined by 

( x - c k Y ) u k + 1  = Yu,, v ~ + + 1 ( x - c k Y )  = v:Y,  (3.1) 

Ck+l = R(Uk+l,  vk+l)* ( 3 .2 )  

The first two equations define an inverse iteration for obtaining eigenfunctions. This 
is a standard procedure if the eigenvalue is known. The convergence of the entire 
iteration is cubic, i.e. ( c k + l -  c ) / ( c ,  - c ) ~  approaches a constant. 

The matrix X - c k Y  is decomposed into the product of a lower triangular matrix 
and an upper triangular matrix. The same decomposition can be used in obtaining 
both U and V .  For the first several iterations only (3.1) are used. This allows the eigen- 
vectors to converge relatively closely to the correct values. Generally, the eigenvalue 
will be accurate to four decimal places after three or four full iterations. 

The generalized Rayleigh quotient iteration is much more efficient than a matrix 
method, particularly for large N .  For example, if N = 70 ,  the above iteration is more 
than five times as fast as the LR algorithm. 

4. Numerical results for the linear case 
We are interested in whether or not plane Couette flow is stable with respect to 

infinitesimal disturbances. However, it is not easy to cover systematically the entire 
a, R plane. Also, for a and R large, where instability is more likely to occur, the Orr- 
Sommerfeld equation is difficult to solve. 

The most recent results on plane Couette flow are due to Davey (1973).  Using 
asymptotic analysis, he showed that, for (aR)* large, if RJ is much larger than a then 

( 4 . 1 ~ )  

(4.1 b )  

C ,  M 1 - 4-1287/(aR)*, 

ci M - a/R - 1*0625/(aR)* 

and if a is much larger than R* then 

c, w 1 - 24249/(aR)*,  ( 4 . 2 ~ )  

ci w -a /R-  1-1691/(aR)*. (4.2b) 
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If we introduce new variables X = aR-* and Y = - Rb,,  then (4.1 b )  becomes 

Y x x + 1*0625X-# 

Y NN X + 1-1691X-4. 
and (4.2 b )  becomes 

This suggests the possibility that Y depends only on X, even when a and Rg are of the 
same order of magnitude and the asymptotic analysis does not hold. 

Davey claims that this is the case for R 2 200, and that this has been checked for 
values of aR up to 100 000. To verify this result, eigenvalues were computed for values 
of R up to 5000 and values of aR up to 250000. In  these cases Y did depend only on 
X up to four decimal places. Table 1 shows the relationship between X and Y .  If we 
let 2 = Rt(cr - l), we have a similar relationship for the real part of the eigenvalue. 

For R 2 200, the minimum value of Y occurs at X = 0.63, Y = 2.17725. Here 
ci = - 2.17725R-4, indicating that the flow is stable. 

5. The nonlinear analysis 
Since the linear results do not correspond with the experimental evidence, we shall 

attempt to find a nonlinear solution. The main approach to this type of problem was 
developed by J. T. Stuart and J. Watson in a series of papers in the early 1960s. We 
shall use the notation of Reynolds & Potter (1967), who modified this approach. 

We begin with the Navier-Stokes equations 

( 5 . 1 ~ )  

au/ax+av/ay = 0, 
with boundary conditions 

u(x ,  f 1 , t )  = & 1 ,  v (x ,  k 1 , t )  = 0. 

(5.1 b )  

We attempt to solve this system in terms of the linear stream function 

$(x, Y ,  t )  = #(!I) exp {i.(. - ct)> 

and its harmonics. It is useful to  introduce a change of variables 0 = a x  + wt, w = @(A),  
A = A(t ) .  Here 0 represents the periodic part of the solution. w is the frequency, 
which in general will depend on the size of the disturbance. A ( t )  is an amplitude function 
yet to be defined. I n  the linear case A(t)  = exp (aci t ) .  

We introduce a stream function defined by aljrlay = au and a$/M = - v. Eliminating 
the pressure p and using the notation c = a2$/ay2 + a2a2$/a82, the Navier-Stokes 
equations become 

We can now approximate the stream function by a truncated Fourier series 

K 

k= 0 
$(A, y, 8)  = [$-‘k)(A, y) eike + Pk)(A,  y )  e-ikeJ. (5.4) 
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Using the notation Bk) = a2$-(k)/ay2 - a2k2Fk),  (5.3) becomes the set of equations 

If the amplitude is small, we can seek a solution as a power series in A. So we make 
the approximations 

K 

n= k 
$-(k) = z An$(k*n)(y), (5.6) 

I f  A = 0 there is no disturbance, and we have the laminar case. Since #(O;O) is the 

Substituting these expansions into (5.5), we get a series of equations 
only term of the expansion (5.6) in this case, D#(O;O) = i a y .  

Lkn $(k; = iac(n-1)G8kl + Hkn 
with boundary conditions 

#(k;n)( f 1 )  = D#(k;n)( f 1 )  = 0, 

(5.9) 

(5.10) 

(5.12) 

(5.13) 

(5.15) 

(if k = 1,  the above sum starts at  m = 2) and 

(if j = k and m = n in Fkn, that term is deleted). 
If k = n = 1, (6.9) becomes 
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This is the Orr-Sommerfeld equation with b(0) = -ac ,  and do) = aci. The amplitude 
of + ( l ; I )  is not determined by the Orr-Sommerfeld equation. We shall use the standard 
normalization $(l; l ) ( O )  = 1. This will implicitly determine the function A(t) ,  which is 
the other part of the solution relating to the size of the disturbance. 

Returning to the set of equation? (5.11), $(@ l )  can be determined explicitly and is 
equal to zero. The right sides of the equations for $(O; and $@; 2, are functions of 
$(l; l),  so we have inhomogeneous linear equations for these functions. But to continue 
the calculations we need to determine the constants dn). This will require some addi- 
tional assumption. 

This would not be a problem if a@) = aci = 0. In  this case L,, would be just the 
Orr-Sommerfeld operator. So the adjoint homogeneous equation would have a solution 
((y), and (5.11) would not have a solution unless its right side was orthogonal to 5. 
This consistency condition would determine the c(n). 

This can be done in the similar case of plane Poiseuille flow. Here there is a linear 
stability curve in the a, R plane on which ci = 0. On this curve, the constants are 
determined by the orthogonality condition. Near the neutral curve the same method 
is used on the basis of continuity. The cfn) vanish for n odd, and 

dA/dt = d2)AS + a(4)A5 + . . . . 
So the sign of a(2) determines the stability of the flow. 

For Couette flow, do) is never zero. So instead of insisting that the linear flow be 
at the transition point, we shall assume that the nonlinear flow is at  the transition 
point, i.e. dA/dt = 0. So A(t )  will be a constant, and any solution will be a steady-state 
solution with frequency w .  Then smaller amplitudes will correspond to stability, and 
larger amplitudes to instability. 

In  this case, we expand 
E 

n=O 
w = z dn)A". 

Although w is a real number we shall view it as complex as a mathematical convenience. 
The physical problem will have solutions for only certain values of A .  We obtain a 
set of equations similar to (5.9) : 

Skn +(k n) = - i ~ ( n - ~ ) G 8 ~ ~  + Hkn, 

9 k n  = i k [ ( d o ) +  ay) (0' - a2k2)]  - R-l(D2 - a2k2)2, 

(5.18) 

(5.19) 
where 

(5.20) 

(if k = 1, the above sum starts a t  m = 2). 
The problem for k = n = 1 is again the Orr-Sommerfeld equation, with a complex 

do) replacing - ac. Since the operators S1, are all identical with Yll, the homogeneous 
equations will all possess the eigensolution +(Q l), and the wfn) must be selected such 
that the adjoint orthogonality condition is satisfied. So 
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The solutions of the physical problem are found by selecting the values of A for which 
w is real. These are given by the roots of the equation 

K 

n=O 
And;) = 0. 

The consistency condition results in o(d = 0 for n odd and qW m, = 0 for k + n odd. 
We shall attempt a second-order solution, i.e. w = do)+ d2)A2.  However, since the 

steady-state solution we obtain is not an asymptotic solution, it is questionable how 
accurate the approximation is. This is discussed in Davey & Nguyen (1971) and 
Ellingsen et aE. (1970). While the solution is not expected to be particularly accurate, 
it should at  least give an indication of the nonlinear behaviour. 

In  order to obtain a better idea of the accuracy, we have calculated d4) for some 
parameter values. This is much more difficult to solve for numerically, so we only 
have solutions for a = 1 and R small. However, the results here are reasonably close 
to the second-order approximations. 

6. Method of solution 
As in the linear case, we approximate functions by a sum of Chebyshev polynomials. 

The adjoint homogeneous system has the form 
(JO) = - ae and $(l; l )  are computed as before. 

(6.1) I {(D2 - a2)2 - iaR[(y + w(O)/a) (D2 - a2) + 2D]}5 = 0, 
f [ ( + l ) = D E ( & l ) = O .  

This is integrated four times and multiplied by i. Letting 

N 

n=O 
E(Y) = 2 anTn@) 

and substituting, we obtain the system of equations 

ia, - 2ia2ai + ia4ak + aRb2, - a3Rbi - aRcai + a3Rcai = 0.  (6.2) 

6 is then computed using the same inverse iteration, except that the eigenvalue is 
now kept fixed. 

and #% 2), we need subroutines for 
taking derivatives and integrals and for multiplying. If we let 

To solve the inhomogeneous equations for qW 

then by (2 .3)  
N 

k=n+l 
cna: = 2 2 hk. 

Also a: = (an-l c,-~ - an+,)/2n. Multiplication can be done by using the relation 

If 
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0 5 10 15 20 

FIQURE 1. Location of steady-state sohtions. 
0 

then 

Solving for ~ ( 2 )  also requires evaluating definite integrals. Using the formula 
%(& 1) = ( k 

N -2an 2 anTn = 2a0+ x2 -. 
/:1n:o n=2 n2- I 

For a second-order approximation, w = d o )  + 
which determines A. 

For a fourth-order approximation, we also need to solve for Q1; 3), qY3; 31, $(a; 4) and 
g5(2; 4). Here $(l; 3, is not determined uniquely, since we can add any multiple of $(% l). 

We use the normalization $(% 3)(0) = 1. A is determined by solving the equation 

Since w is real, 0 = wto) + 

0 = + A~w~Z)  + A444). 

7. Numerical results 
The above procedure was carried out for a variety of values for a and R. The results 

are summarized in figure 1. Steady-state solutions do exist for values of a! and R to 
the left of the given curve, but there are no such solutions for values t o  the right of 
the curve. 

Table 2 shows the amplitude A and the frequency w associated with the solutions. 
The column for -ac, represents the linear frequency. E measures the size of the 
disturbance, where we define E by 
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R 
100 
100 
100 
100 
100 

200 
206 
200 
200 
200 
200 
200 
200 
200 

500 
500 
500 
500 
500 
700 
700 
700 
700 
700 
700 
700 

1000 
1000 
1000 
1000 
1000 
1000 

5 000 
10 000 
50 000 

100 000 

- 

U 

1 
2 
4 
6 
7 

1 
2 
3 
4 
5 
6 
7 
8 
9 

1 
4 
6 
9 

12 

1 
3 
6 
8 
9 

12 
14 

1 
3 
9 

10 
15 
16 

1 
1 
1 
1 

- ac, 
- 2.07 x 10-1 
- 7.98 x lo-' 
- 2.26 
- 3.85 
- 4.67 

- 3.50 x lo-' 
- 1.01 
- 1.76 
- 2.55 
- 3.37 
- 4.21 
- 5.06 
- 5.92 
- 6-79 

-5.09 x lo-' 
- 2.87 
- 469 
- 7.26 
- 9.98 

-5.58 x lo-' 
- 2.13 
-4.71 
- 6.50 
- 7.41 
- 1.01 x 10' 
- 1.20 x 10' 

- 6.05 x LO-' 
- 2.22 
- 7.56 
- 8.46 
- 1.31 x 10' 
- 1.40 x 10' 

- 7.65 x lo-' 
- 8.12 x lo-' 
- 8.89 x lo-' 
- 9.12 x lo-' 

A 

5.21 x 10-2 
3.99 x 10-2 
1.73 x 
1.01 x 10-2 
1.72 x 

2-55 x lo-* 
1.71 x 10-2 
1.05 x 
6.20 x lo-$ 
3.65 x 

1.35 x 

4.61 x lo-* 

1.03 x 10-2 
1.99 x 10-a 

6.49 x 
1.42 x 

2-18 x 10-3 

9.35 x 10-4 

5.01 x 10-4 

7-70 x 10-3 
2.82 x 10-3 
3.16 x 10-4 
7.26 x 
3-51 x 
4.62 x 
2.21 x 10-6 

5.67 x 

2.00 x 10-6 
9.32 x 10" 

1-93 x 10-3 

4-71 x 10-7 
7.91 x 10-7 

8.99 x 10-4 
2.72 x 10-4 
1.55 x 10-4 

1.53 x lo-$ 

0 

- 2.51 x lo-' 
-4.61 x lo-' 
- 3.49 x 10-1 

4.45 
8.64 x lo1 

- 3.78 x lo-' 
- 8.48 x 10-1 
- 1.32 
- 1.66 
- 1.71 
- 1.24 

4.84 x lo-' 
7.19 
1.57 x 10' 

-5.33 x 10-1 
- 2.53 
- 3.58 
- 3.59 

- 5.81 x lo-' 
- 2-00 
- 4.04 
- 5.03 
- 5.26 
- 2.00 

- 6.27 x lo-' 
- 2.14 
- 6.21 
- 6.60 

1.89 
3.04 x 10' 

2.32 x 10' 

4.76 x 10' 

- 7.80 x 10-1 
- 8.25 x lo-' 
- 8.97 x 10-1 
- 9.19 x 10-1 

TABLE 2. Values of R, u, -uc,, A ,  o and E.  

E 
1.26 x 
1.09 x 10-8 
2.53 x 
1.11 x 10-1 
1.33 

4.98 x 
3-73 x 10-8 
3.96 x 
5.03 x 10-8 
7.28 x 10-8 
1-15 x lo-* 
2.04 x 10-2 
4.74 x 10-2 
5-78 

1.43 x 10-8 
9.68 x 10-4 
1.30 x 
2.99 x 10-8 
2-41 x 10-2 

9.24 x 10-4 
5.95 x 10-4 
6-57 x 10-4 
9.34 x 1 0 4  
1-18 x lo-$ 
3.62 x 10-8 
2.46 x 
5.87 x 10-4 
3.38 x 10-4 

5-10 x 10-4 
6-19 x 10-4 
3.58 x 10-8 
1.03 x 10-2 

8.41 x 10-6 
3.82 x 10-6 

2-68 x 10" 
6.41 x 104 

i.e. we integrate the sum of the squares of the perturbations with respect to y and one 
period of 8 and then divide by the length of the intervals. To first order in A2 

As in experiments, the larger the Reynolds number, the smaller the size of the 
disturbance. For a given fixed R, the minimum E occurs for fairly small a. For small 
a, the frequency o is very close to the linear frequency - ac,. As a increases, the fre- 
quency becomes more and more distorted from the linear case, and a larger disturbance 
is necessary to create a steady-state solution. Finally a region is reached where there 
are no steady-state solutions. 
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U, 

0.02 + 

F I U ~  2. The linear solution (dashed curve) and the nonlinear solution (solid 
curve) for (a) u' and (b)  v' when R = 1000, a = 3 and 0 = 0. 

Ellingsen et al. solved this problem for the cases a = 0.5 and a = 1 for R varying 
from 1000 to 10000. They solved the linear eigenvalue problem using asymptotic 
expansions. Their eigenvalues agree with ours to three decimal places. Also, they 
assumed that w = - acr. This is approximately correct if a is small. 

They found the nonlinear terms to be destabilizing, which checks our results. 
Normalizing the vorticity, they found that A decreases very slowly with increasing 
R, and seemingly approaches a constant value. 

With our normalization, A and E decrease fairly rapidly. In  fact, if a = 1, E is 
approximately proportional to R-*. For R < 1000, E w 5.8R-4. The constant then 
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R A w 

100 3.92 x - 1.63 x 10-1 
200 2.14 x lo-* - 2.60 x lo-' 
500 9.70 x - 4.37 x 10-1 
700 7.54 x 10-8 - 5.04 x 10-1 

TABLE 3. Values of R, A and w for a = 1 and a fourth-order approximation. 

increases slowly, so that for R = 100000, E = 12.44R-8. So E decreases steadily with 
increasing R, indicating decreasing stability with respect to finite disturbances. 

The actual solutions can be easily obtained, Using a second-order approximation, 

u = y+(2/a)A[D(ReqY1;1))cos8-D(Im~(~ '))sine] 

+(2/a)A2[DqW 2)+D(Req5(2; 2))cos20-D(Imq5(2; 2))sin28], (7.1) 

(7-2) 

w = 2A[(Re $(c l)) sin 8 + (Im gYc l)) cos 81 + 4A2[(Re $(% 2)) sin 20 + (Im qY2; 2)) cos 281. 

If we ignore the A2 terms, this is the Orr-Sommerfeld solution. 
The resulting linear and nonlinear perturbations u' and w' are plotted for the case 

R = 1000, a = 3 and 8 = 0 in figure 2. For the linear case, the disturbance is con- 
centrated near the boundary y = 1. As R decreases or a increases, the disturbance 
becomes larger in magnitude, but retains the same basic shape. The nonlinear 
disturbance is slightly larger and more spread out. As a increases, the nonlinear 
solution becomes much larger than the linear perturbation. 

The fourth-order solution is much harder to compute accurately. However, the only 
major change is in computing gY1; 3). This function is not unique, since any multiple of 
qY1; l) can be added. We have used the normalization qW 3)(0) = 1. Table 3 gives a few 
solutions for a = 1 and R small. In  these cases, the fourth-order terms cause the 
amplitude and the frequency to decrease in magnitude. So these terms are further 
destabilizing. Also, as R increases, the solutions get closer to the second-order solutions. 

Our results for small R, then, are not terribly accurate. However, they do seem to 
indicate the general behaviour of a nonlinear solution. 

This research was partially supported by the Air Force Office of Scientific Research 
under grant no. AFOSR-71-2063. Also, many of the calculations were done using an 
IBM 360/65 belonging to New Mexico State University's Computer Center. 
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