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The Orr-Sommerfeld equation is solved numerically using expansions in Chebyshev
polynomials and the generalized Rayleigh quotient iteration. Accurate results for
large values of the parameters are obtained, and these further verify the belief that
plane Couette flow is stable to infinitesimal disturbances. For finite disturbances, a
formal expansion based on the method of Stuart and Watson as modified by Reynolds
& Potter is used. This method shows a transition to instability for a large enough
amplitude.

1. Introduction

In this paper we are concerned with the question of the stability of plane Couette
flow. The case of infinitesimal disturbances has been studied numerically by Gallagher
& Mercer (1962), Deardorff (1963) and more recently by Davey (1973). These papers
indicate that plane Couette flow is stabie for all values of the two parameters: the
wavenumber « and the Reynolds number R. The first part of this paper develops an
efficient method of computing accurate eigenvalues which allows their computation
for larger values of the parameters. The eigenvalues obtained further confirm the
belief in stability. :

However, in a series of experiments, Reichardt (1956) was able to maintain laminar
flow only for R up to about 750. The assumption is that nonlinear effects cause the
transition to turbulent flow.

The nonlinear analysis centres about an equation for the amplitude of the velocity
disturbance of the form dA/dt = a®A+a®A43+.... Here a® = ac;, where ¢ is an
eigenvalue of the linearized stability theory. For Couette flow, a®® < 0 for all values of
a and R. If a® is positive, then for a large enough amplitude dA/dt will be positive,
and disturbances will grow instead of dying out.

The second part of this paper involves numerical calculations of the values of 4
for which a©@4 +a®A43 = 0. This gives the threshold amplitude for a second-order
approximation, i.e. the amplitude for which the disturbance neither grows nor decays.
These threshold amplitudes have been calculated for some special cases by Ellingsen,
Gjevik & Palm (1970). Also, Davey & Nguyen (1971) discussed this problem for the
similar case of pipe flow. This paper presents more detailed calculations.

Also, the accuracy of this second-order approximation has been questioned. So a
fourth-order approximation has been calculated for a few cases. These results are
fairly close to the second-order approximations, and are further destabilizing.
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2. The linear problem

We consider the flow of a viscous incompressible fluid between two horizontal
planes. In non-dimensional form, the planes are two units apart and move such that
the speed of the upper plane is + 1 and the speed of the lower plane is — 1. The x axis
is chosen midway between the planes. The Reynolds number R is the reciprocal of the
kinematic viscosity, and u(x, y,¢) and »(z, y,t) are the x and y components of the fluid
velocity. The basic laminar flow is u = y, v = 0. We shall study perturbations of the
formu = y+u', v = v’, where %’ and v’ are small.

We may introduce a perturbation stream function ¢ defined by «' = dy/oy and
v’ = — 0y/ox and seek periodic solutions of the form ¥ = @(y) exp {{a(x—ct)}. Sub-
stituting into the Navier—Stokes equations and neglecting second-order quantities, we
obtain the familiar Orr—Sommerfeld equation

(D~ a2 —iaR(y—c) (D*—a)} § = 0 (2.1)

with boundary conditions
#(£1)=Dg(£1) = 0. (2.2)

In this formulation, ¢ is a complex-valued function. But since the original Navier—
Stokes equations contain no complex quantities, and have been linearized, }(y +¥)
is also a solution, and is real valued.

For given values of « and R, a non-trivial solution for ¢ exists only when ¢ = ¢, +ic;
is a complex eigenvalue. If ¢; > 0 the flow is unstable and if ¢; < 0 the flow is stable.

We shall approximate ¢(y) by N

3 a, T,(y),

where T, (y) is the nth-degree Chebyshev polynomial, defined by 7}, (cos ¢) = cosnf.
The advantages of Chebyshev polynomials are discussed in general by Fox & Parker
(1972) and for the particular case of plane parallel flows by Orszag (1971). The most
important fact is that Chebyshev polynomial approximations are of infinite order, in
the sense that errors decrease more rapidly than any power of 1/N as N approaches
infinity. So accurate solutions can be obtained more rapidly using Chebyshev poly-
nomials.

Also, the equations for the coefficients a,, can be obtained relatively easily using the
relations
¢ Toia _ Y
n+1 n—1

2[T, = (2.3)

and
yTn = %(dn~1 Tn—l +¢, Tn+1)1 (2'4)

wherec, =0ifn < 0,¢,=2,¢,=1ifn > 0,andd, =0ifn < 0,d, =1ifn > 0. It
is more efficient to integrate (2.1) four times to obtain

¢—202[[ ¢+t [[[[¢—iaR{[[yp~2[[[¢—c?[[[[yp~c[[$+a%[[[[$} = 0. (25)

If we represent the kth integral of ¢ by ak 7, and the kth integral of y¢ by bk T),,
this leads to a system of equations

a, — 2ia%ad +ixtal + a Rb? — 2a Rad — a3 Rb2 — caRa% + ca®Ra?, = 0. (2.6)
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If we let 22 indicate that the summation is in steps of two, then
3 2 ik+h—2a

3

2 _ w2 n—A-+k+h Cn—a+k+h
a, =

" kz——:lhz=:1 dn(n—2+k)

H

3 3 3 skthH+l
2? Mg, o n ket Cnbth ket

d=yr 32y
i—1im1h=1 8(n—-2+l)(n—4+k+1])’
3 3 3 3 Sk-+htl
ol = 32 32 32 e VG gtk nrtrm OBtk htim
r meliclim1h=1 160(n—2+m)(n—4+m+1) n—~6+m+1+k)
3 3 3 sk+h-g ’
B2 =32 32 32 ? U ~8+k+h+] On~6+k+htj
2 =
j=1k=1h=1 8n{n—2+k) ’
3 3 3 3 3 m+l+k+h,
b= 32 Y2 32 3 B VPt 0 mHktht) Cn—104m kR
4=

i 21 52 =24 m) (n—d+m+]) (16 +m+ L+ F)

(ifn=4,7=3andm =1 =k = h = 1, the above coefficient is doubled).

Because of the integration, (2.6) contains arbitrary constants for the cases n = 0,
1, 2 and 3. So we replace the equations by equations representing the boundary
conditions. Using the relations 7,(+ 1) = (+ 1)®* and DT, (+1) = 23(+ 1)*1, we can
obtain the equations

N N N N
22 ay, = 0, 22 a, =0, 22 nza’n =0, 22 nza‘n =0
n=1 =0

n=0 n=1
Using these four equations plus (2.6) for n = 4, 5, ..., N, we obtain a system of
N +1 equations in N + 1 unknowns. In matrix form this can be written as
XU —-cYU = 0,

where X is a complex-valued matrix, Y is areal-valued matrixand U = (ag, a4, ..., ax)T
is the eigenvector to be determined.

3. Solving the matrix eigenvalue equation

A standard method of solving the above system would be the LR or QR matrix
eigenvalue algorithm, described by Wilkinson (1965) and modified for problems
of this type by Gary & Helgason (1970). However, this method finds all the eigenvalues,
and we are mainly interested in the eigenvalue whose imaginary part is closest to
zero. So an alternative method is used, based on a series of papers by Ostrowski
(1958-9) discussing the Rayleigh quotient.

We define a generalized Rayleigh quotient R(U, V) = (VIXU)/(VTYU). If

XU = ¢cYU and VTX =¢VTY,

then R(U,V) = c. Moreover, the quotient is stable, i.e. R(U+eU’, V+¢€V’) differs
from R(U, V) only by terms of second order in €.

This makes possible an iterative procedure for determining any specific eigenvalue c.
We start with an approximation ¢, and arbitrary vectors U, and V,,. Here ¢, can be
obtained from the asymptotic analysis, by using an eigenvalue computed for nearby
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X Y Z

0-1 2-874 —8-065
0-2 2-530 —6-012
0-3 2-357 ~4:978
0-4 2-25¢4 —4-338
0-5 2-199 —3-900
0-6 2-178 —-3-576
0-7 2-182 —3-324
0-8 2-203 —3-122
0-9 2-236 —2-943
1-0 2-280 —2-813

TaBLE 1. Values of X, Y and Z for R > 200.

values of « and R or by using a matrix algorithm for a smaller value of N. The iteration
is defined by
(x—ck Y)Uk+1 = YUk, V;‘[:‘.l_l(x—ck Y) = VE Y, (3.1)

Crr1 = B(Upir, Vina)- (3.2)

The first two equations define an inverse iteration for obtaining eigenfunctions. This
is a standard procedure if the eigenvalue is known. The convergence of the entire
iteration is cubic, i.e. (¢, ; —c)/(c;, —¢)® approaches a constant.

The matrix X —c, Y is decomposed into the product of a lower triangular matrix
and an upper triangular matrix. The same decomposition can be used in obtaining
both U and V. For the first several iterations only (3.1) are used. This allows the eigen-
vectors to converge relatively closely to the correct values. Generally, the eigenvalue
will be accurate to four decimal places after three or four full iterations.

The generalized Rayleigh quotient iteration is much more efficient than a matrix
method, particularly for large N. For example, if N = 70, the above iteration is more
than five times as fast as the LR algorithm.

4. Numerical results for the linear case

We are interested in whether or not plane Couette flow is stable with respect to
infinitesimal disturbances. However, it is not easy to cover systematically the entire
«, R plane. Also, for « and R large, where instability is more likely to occur, the Orr—
Sommerfeld equation is difficult to solve.

The most recent results on plane Couette flow are due to Davey (1973). Using
asymptotic analysis, he showed that, for («R)? large, if R} is much larger than & then

¢, & 1—-4-1287[(aR)}, (4.1a)

c; & —af|R—1-0625/(aR)} (4.1b)
and if « is much larger than R} then

¢, & 1—2:0249/(aR)?, (4.2a)

¢; ¥ —afR—1-1691(aR)}. (4.2b)
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If we introduce new variables X = aR-* and ¥ = — Ric,, then (4.15) becomes

Y~ X+1.0625X-% (4.3)
and (4.2b) becomes
Y ~ X +1-1691X-3, (4.4)

This suggests the possibility that ¥ depends only on X, even when o and R? are of the
same order of magnitude and the asymptotic analysis does not hold.

Davey claims that this is the case for B > 200, and that this has been checked for
values of aR up to 100000. To verify this result, eigenvalues were computed for values
of R up to 5000 and values of aR up to 250000. In these cases Y did depend only on
X up to four decimal places. Table 1 shows the relationship between X and Y. If we
let Z = R¥(c,— 1), we have a similar relationship for the real part of the eigenvalue.

For R > 200, the minimum value of ¥ occurs at X = 0-63, ¥ = 2:17725. Here
¢; = — 2:17725R-%, indicating that the flow is stable.

5. The nonlinear analysis

Since the linear results do not correspond with the experimental evidence, we shall
attempt to find a nonlinear solution. The main approach to this type of problem was
developed by J. T. Stuart and J. Watson in a series of papers in the early 1960s. We
shall use the notation of Reynolds & Potter (1967), who modified this approach.

We begin with the Navier-Stokes equations

ou au au 3p 32u %
7T "% 3y T ( ) 0. (6-1a)
o v v %
e By 3y ( ) 0. (5.18)
oufox +ovfoy = 0, (5.1¢)
with boundary conditions
we, +1,8) =11, o(z, £1,t) =0. (6.2)

We attempt to solve this system in terms of the linear stream function

Y, y.t) = ¢(y) exp {’l«CZ(x - Ct)}
and its barmonices. It is useful to introduce a change of variables 0 = ax + wt, v = w(4),
A = A(t). Here 0 represents the periodic part of the solution. w is the frequency,
which in general will depend on the size of the disturbance. 4 (¢) is an amplitude funection
yet to be defined. In the linear case A(t) = exp (ac,?).

We introduce a stream function defined by 0yr/oy = au and 9y/00 = —v. Eliminating
the pressure p and using the notation § = 9%/ [dy?+ a%0%)r[00%, the Navier-Stokes
equations become

dA a§ dw dA 32,0] of ool 11
-d—t—'éz+[a)+tdA 7 +3y — 5 P 5+l 302] = 0. (5.3)

o0 00dy R
We can now approximate the stream function by a truncated Fourier series

¥(4,y,6) = §0 [W9(4, ) €9 + P94, ) =i%0]. (5.4)
k=
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Using the notation Z® = 92y/®)[9y? — 2k2¢/®), (5.3) becomes the set of equations

dA o0Z® dA dw 1{o2 i
&t oA " [ ‘@ dA] R {?’)?/_2 B “2k2} 2O 5
o ore [ J
K 3¢<k—:> 52 Z(k—i)] 24 [ 31';@— ) . aZ(j—k)]
VA y/0) )

x {JEOJ [ %y Z" —v %y
[ _ 20 1‘[,ue+1) W)aztkﬂ)]} _0. (55)

1=0 oy

If the amplitude is small, we can seek a solution as a power series in 4. So we make

the approximations

Yo = An¢(k.n)
1d4 K
n (n)
i
dw dA K
—— e = n}n)
+i AT n§0A b,

(5.6)

(5.7

(5.8)

If A = 0 there is no disturbance, and we have the laminar case. Since ¢:9 is the

only term of the expansion (5.6) in this case, D¢ 30 = Lay.
Substituting these expansions into (5.5), we get a series of equations
Lk'n ¢(k’ = %M("_I)G3k1 + Hkn

with boundary conditions
¢(k;n)( + 1) = D¢(k;n>( + 1) =0,

where
Ly, = ik[(— ink—1a® + b0 + ay) (D? — a?k?)] - R-YD2?—a2k?)?,

ioc™ = —a™ — b,
G = (D% —a?) g0,
206m) = (D2 — o 2k?) ki),
n—1

H,, =— Y (ma®m +qjghm—m)zsm 4
m=k

1+8,,0

(if & = 1, the above sum starts at m = 2) and

n—

% 7‘.7 [Z(J ;m) D¢(k—] n—m)._¢(] m) Dofk—d; n—m)]

n—

k m=J

k+
E
K i+
Z Z 74_7 [z(j; m) Dgg(j—k; n—m) _ ¢(J'; m)DZ(j—k; n—m)]
_»; o=
K}] Z zj [ — 365 m Dkt n—m) . J; m) Dafle+4i n—m]
j=0 =g

(if j = k and m = n in F,,, that term is deleted).
If £ = n = 1, (5.9) becomes

{(@© + 6O + i) (D? — a?) — R-YD?— a?)B g% 1) = 0

(5.9)
(5.10)

(5.11
(5.12

)
)
(5.13)
)

(5.14

(5.15)

(5.16)

(5.17)
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This is the Orr—Sommerfeld equation with 5 = —ac, and a® = ac;. The amplitude
of ¢1:1 is not determined by the Orr—Sommerfeld equation. We shall use the standard
normalization ¢ D(0) = 1. This will implicitly determine the function A4(t), which is
the other part of the solution relating to the size of the disturbance.

Returning to the set of equations (5.11), ¢ U can be determined explicitly and is
equal to zero. The right sides of the equations for ¢© 2 and ¢® ? are functions of
@& D, s0 we have inhomogeneous linear equations for these functions. But to continue
the calculations we need to determine the constants ¢™. This will require some addi-
tional assumption.

This would not be a problem if a® = ac, = 0. In this case L,,, would be just the
Orr-Sommerfeld operator. So the adjoint homogeneous equation would have a solution
£(y), and (5.11) would not have a solution unless its right side was orthogonal to &.
This consistency condition would determine the ¢™,

This can be done in the similar case of plane Poiseuille flow. Here there is a linear
stability curve in the a, R plane on which ¢; = 0. On this curve, the constants are
determined by the orthogonality condition. Near the neutral curve the same method
is used on the basis of continuity. The ¢ vanish for n odd, and

dAJdt = a®A3+a®45 ...

So the sign of a® determines the stability of the flow.

For Couette flow, a'® is never zero. So instead of insisting that the linear flow be
at the transition point, we shall assume that the nonlinear flow is at the transition
point, i.e. d4/dt = 0. So A(t) will be a constant, and any solution will be a steady-state
solution with frequency w. Then smaller amplitudes will correspond to stability, and
larger amplitudes to instability.

In this case, we expand

w™A4n,
0

W =

MK

Although wis a real number we shall view it as complex as a mathematical convenience.
The physical problem will have solutions for only certain values of 4. We obtain a
set of equations similar to (5.9):

L 5 = =G, + (5.18)
where
Fin = th[(0Q + ay) (D? — a2k?)] — R~YD? — o2k?)2, (5.19)
Hy = ik S wn-mgsm T (5.20)
kn m=k 1+ 8k0 .

(if k = 1, the above sum starts at m = 2).

The problem for k = » = 1 is again the Orr-Sommerfeld equation, with a complex
w@replacing — ac. Since the operators .Z,,, are all identical with .%,,, the homogenecus
equations will all possess the eigensolution ¢®& b, and the w™ must be selected such
that the adjoint orthogonality condition is satisfied. So

1 1
o= [* Heayf [ agay
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The solutions of the physical problem are found by selecting the values of 4 for which
w is real. These are given by the roots of the equation

K
> A\ = 0.
n=0
The consistency condition results in ©™ = 0 for n odd and ¢* ™ = 0 for k + »n odd.

We shall attempt a second-order solution, i.e. v = 09+ w®A2 However, since the
steady-state solution we obtain is not an asymptotic solution, it is questionable how
accurate the approximation is. This is discussed in Davey & Nguyen (1971) and
Ellingsen et al. (1970). While the solution is not expected to be particularly accurate,
it should at least give an indication of the nonlinear behaviour.

In order to obtain a better idea of the accuracy, we have calculated w® for some
parameter values. This is much more difficult to solve for numerically, so we only
have solutions for « = 1 and R small. However, the results here are reasonably close
to the second-order approximations.

6. Method of solution

Asin the linear case, we approximate functions by a sum of Chebyshev polynomials.
w® = —ac and ¢® D are computed as before.
The adjoint homogeneous system has the form

{(D?— 02 — i R[(y + wO)ax) (D — a?) + 2D} £ = 0,:

£(+1) = DE(+1) = 0. (6.1)

This is integrated four times and multiplied by i. Letting

N
59) = 3 anT(y)

and substituting, we obtain the system of equations
ia, — 2ia%a? +iatad + o Rb% — a®Rbj, — aReal, + o®Reay, = 0. (6.2)

£ is then computed using the same inverse iteration, except that the eigenvalue is
now kept fixed.

To solve the inhomogeneous equations for ¢@ 2 and ¢@ 2, we need subroutines for
taking derivatives and integrals and for multiplying. If we let

N N1
D a, T | = atT,,
n=0 n=0

then by (2.3)

N
c,at=2 3 ka,.
k=n+1

Also a}, = (@,_; 64y — @pq)/2n. Multiplication can be done by using the relation

If 1;- Ts = %[TL+3 + Tlr—sl]' (63)

N N
¢= goa"nTm 3[r= gobnTn’
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1000r-

| i L 1
0 5 10 15 20
-4

Figure 1. Location of steady-state solutions.

then
N N og.b

=3 3 —2-1 (Tiss+ Tl

L i=0;7=0
Truncating gives

1 1 N-—n

n_—{z ay n-—k+‘" 2 by nt— X a’kbk+n}'
Cnk=n Cn k=0

Solving for w® also requires evaluating definite integrals. Using the formula

T 1) =(£1),
1

Z a, T, = 2a,+ 22
~1ln=0 1

For a second-order approximation, v = 0® 4 4%®, Since w is real, 0 = w{® + 4%,
which determines A.

For a fourth-order approximation, we also need to solve for ¢@® 3, ¢@ 3, & 4 and
¢ 4. Here ¢ 3 is not determined uniquely, since we can add any multiple of ¢& D,
We use the normalization ¢®3(0) = 1. 4 is determined by solving the equation
0 = o + A20® + A%®,

7. Numerical results

The above procedure was carried out for a variety of values for « and R. The results
are summarized in figure 1. Steady-state solutions do exist for values of « and R to
the left of the given curve, but there are no such solutions for values to the right of

the curve.
Table 2 shows the amplitude 4 and the frequency w associated with the solutions.

The column for —ac, represents the linear frequency. B measures the size of the
disturbance, where we define £ by

=g | [ G aoay,
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R a —ac, A ® B

100 1 —207x 101 5-21 x 10-2 ~2-51x101 1-26 x 102
100 2 —T7-98 x 101 3-99 x 102 —4-61x101! 1-09 x 102
100 4 —2-26 1-73 x 10-2 —349x 101 2-53 x 102
100 6 —3-85 1-01 x 102 4-45 1-11 x 101

100 7 —4-67 1-72 x 10-2 8-64 x 10! 1-33
200 1 —3-50x 101 2-55 x 102 —3-78x 101 4-98 x 10-3
2006 2 —-1-01 1-71 x 102 —848 x 101 373 x 108
200 3 —1-76 1-06 x 102 —1-32 3-96 x 103
200 4 —2-55 6-20 x 10-3 —1-66 5:03x 10-8
200 5 —3-37 3-65 x 10-3 -1-71 7-28 x 108
200 6 —4-21 2-18 x 10-8 —1-24 1-15 x 10—
200 7 - 5-06 1-35 x 102 484 x 101 2:04 x 102
200 8 —5-92 9-35 x 104 7-19 4:-74 x 102

200 9 -—6-79 4-61x 103 1-57 x 103 575
500 1 —-5-09%x 101 1-03 x 102 —-5-33x 101 1-43 x 10-3
500 4 —2-87 1-99 x 102 —2-53 9-68 x 10-¢
500 6 —4-59 5-01 x 104 —3-58 1-30 x 10~
500 9 —7-26 6-49 x 105 —3-569 2:99x 108
500 12 —9-98 1-42 x 10-8 2-32 x 10 241 x 102
700 1 —5-58 x 101 7-70 x 10-? —5-81x 101 9-24 x 104
700 3 —2-13 2-82 x 103 —2-00 5-95x 104
700 6 —4-71 3-16 x 104 —4-04 6-57 x 104
700 8 —6-50 7-26 x 108 —5-03 9-34 x 104
700 9 —7-41 3-51x 10-% —526 1-18 x 103
700 12 —1-01x 10 4-62 x 10-¢ —-2-00 3-62 x 103
700 14 —1-20x 10! 2-21 x 10-¢ 4-76 x 10t 2-46 x 102
1000 1 —6-05 x 10-1 5-67 x 102 —6-27 x 101 5-87 x 104
1000 3 —2:22 1-93 x 10-3 —2-14 3-38x 104
1000 9 —17-56 2-00 x 105 —6-21 5-10 x 104
1000 10 —8:46 9-32 x 10-¢ —6-60 6-19 x 10-¢
1000 15 —1-31x 10! 4-71 x 1077 1-89 3-58 x 103
1000 16 —1-40x 10! 7-91x 107 3-04 x 10! 1-03 x 10-2
5000 1 —7-65 x 10-1 1-53 x 10 —7-80 x 10-1 8-41 x 10~
10000 1 —8-12x 101 8-99 x 10— —8-25x 101 3-82x 108
50000 1 —8-89 x 101 2:72x 104 —897 x 101! 6-41 x 10-¢
100000 1 —9-12x 101! 1-55 x 104 —9-19x 101 2-68 x 10—

TasBLE 2. Values of R, &, ~-ac,, 4, w and E.

i.e. we integrate the sum of the squares of the perturbations with respect to  and one
period of # and then divide by the length of the intervals. To first order in 42

1
m=ar [ [ goipa gt ay.

As in experiments, the larger the Reynolds number, the smaller the size of the
disturbance. For a given fixed R, the minimum E occurs for fairly small a. For small
@, the frequency w is very close to the linear frequency — ac,. As a increases, the fre-
quency becomes more and more distorted from the linear case, and a larger disturbance
i8 necessary to create a steady-state solution. Finally a region is reached where there
are no steady-state solutions.
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Ficure 2. The linear solution (dashed curve) and the nonlinear solution (solid
eurve) for (a) 4’ and (b) v* when R = 1000, « = 3 and 6 = 0.

Ellingsen ef al. solved this problem for the cases a = 0-5 and a = 1 for R varying
from 1000 to 10000. They solved the linear eigenvalue problem using asymptotic
expansions. Their eigenvalues agree with ours to three decimal places. Also, they
assumed that v = — ac,. This is approximately correct if « is small.

They found the nonlinear terms to be destabilizing, which checks our results.
Normalizing the vorticity, they found that 4 decreases very slowly with increasing
R, and seemingly approaches a constant value.

With our normalization, 4 and E decrease fairly rapidly. In fact, if a = 1, E is
approximately proportional to R—%. For R < 1000, E ~ 5-8R-%. The constant then
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R A )

100 3-92x10-2 —1.63x 101
200 2:14 x 102 —2:60x 101
500 970 x 10-8 —4-37x 101
700 7:54 x 103 —504x 101

TaBLE 3. Values of R, A and w for & = 1 and a fourth-order approximation.

increases slowly, so that for B = 100000, E = 12-44R-%. So E decreases steadily with
increasing R, indicating decreasing stability with respect to finite disturbances.
The actual solutions can be easily obtained. Using a second-order approximation,

u = y+(2/a) A[D(Re ¢ V) cos § — D(Im ¢ V) sin 6]
+(2/a) A2[Dg® 2+ D(Re ¢% ) cos 26 — D(Im ¢ 2) sin 26], (7.1)

v = 24[(Re ¢ V) sin 6 + (Im ¢ V) cos 0] + 442[(Re ¢ ) sin 20 + (Im ¢ ?) cos 20].
(7.2)
If we ignore the 42 terms, this is the Orr—Sommerfeld solution.

The resulting linear and nonlinear perturbations «’ and ¢’ are plotted for the case
R =1000, « = 3 and @ = 0 in figure 2. For the linear case, the disturbance is con-
centrated near the boundary y = 1. As R decreases or « increases, the disturbance
becomes larger in magnitude, but retains the same basic shape. The nonlinear
disturbance is slightly larger and more spread out. As o increases, the nonlinear
solution becomes much larger than the linear perturbation.

The fourth-order solution is much harder to compute accurately. However, the only
major change is in computing ¢® . This function is not unique, since any multiple of
¢® D can be added. We have used the normalization ¢® $(0) = 1. Table 3 gives a few
solutions for @« = 1 and R small. In these cases, the fourth-order terms cause the
amplitude and the frequency to decrease in magnitude. So these terms are further
destabilizing. Also, as R increases, the solutions get closer to the second-order solutions.

Our results for small R, then, are not terribly accurate. However, they do seem to
indicate the general behaviour of a nonlinear solution.

This research was partially supported by the Air Force Office of Scientific Research
under grant no. AFOSR-71-2063. Also, many of the calculations were done using an
IBM 360/65 belonging to New Mexico State University’s Computer Center.
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